Renormalization-group approach to the local Green functions of a family of generalized Fibonacci lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L949
(http://iopscience.iop.org/0305-4470/24/16/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:47

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Renormalization-group approach to the local Green functions of a family of generalized Fibonacci lattices

J X Zhong, J R Yan and J Q You
China Centre of Advanced Science and Technology (World Laboratory), PO Box 8730 , Beijing 100080, People's Republic of China
Laboratory of Modern Physics, Institute of Science and Technology, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China \dagger and
Laboratory of Atomic lmaging of Solids, Institute of Metal Research, Academia Sinica, Wenhua Road, Shengyang 110015, People's Republic of China

Received 3 April 1991

Abstract

We study the local electronic properties of a family of generalized Fibonacci lattices associated with the sequences which are given by the inflation rule $(A, B) \rightarrow$ ($\bar{A} \bar{B}^{n}, \hat{A}$), where n is an arbitrary positive integer greater than one. \hat{A} unified reai-space renormalization-group approach is presented to calculated the local Green function and the local density of states at any given site.

In recent years there has been a growing interest in the theoretical study of the electronic and phonon properties of the one-dimensional (1D) Fibonacci lattice [1-9] and the generalized Fibonacci lattices [10-16]. Kohmoto et al [1] introduced a dynamical-systems-theory method to study the Fibonacci lattice and Jater this method was applied to deal with the generalized Fibonacci lattices [10-14]. Results showed that, for the Fibonacci lattice, the spectrum is a Cantor set [1-6]; while for the generalized Fibonacci lattices more physical properties were found particularly for a family of the generalized Fibonacci lattices corresponding to the sequences S_{∞} given by the recursion relation $S_{l+1}=\left\{S_{I}, S_{l-1}^{n}\right\}$ for $l \geqslant 1$ with $S_{0}=\{B\}$ and $S_{1}=\{A\}$, in which n is an arbitrary positive integer greater than one [10-16]. This family of lattices are termed the $B n$ chains here for convenience according to the inflation rule $(A, B) \rightarrow\left(A B^{\prime \prime}, A\right)$.

On the other hand, since the quasiperiodic systems have no translational invariance, every site in the chain has a different environment. So it is important to study the local electronic and phonon properties. For the Fibonacci chain, Ashraff and Stinchcombe [17], Chakrabarti et al [18] and Capaz et al [19] recently calculated the local Green function (LGF) and the local density of states (LDOS) at a particular site. More recently, an exact real-space renormalization-group scheme was given by Zhong et al [20, 21] to obtain the lgF and ldos at any given site. However, to our knowledge, attention has, to date, mainly concentrated on the Fibonacci chain. Stimulated by the interesting results of the $B n$ chain, we present here a unified rSRG approach to calculate the LGF and the ldos of the Bn chain.

In our study, we emply the following 1D electronic tight-binding Hamiltonian:

$$
\begin{equation*}
H=\sum_{i}|i\rangle \varepsilon_{i}\langle i|+\sum_{i j}|i\rangle V_{i j}\langle j| \tag{1}
\end{equation*}
$$

[^0]where the nearest-neighbour hopping integral $V_{i j}$ takes two kinds of values V_{A} and V_{B} represented by letters A and B, respectively; A and B are arranged in the $B n$ sequence. The site energy ε_{i} takes one of the four values according to the local environment of site i
\[

\varepsilon_{i}= $$
\begin{cases}\varepsilon_{\alpha} & \text { if } V_{i-1, i}=V_{i, i+1}=V_{A} \\ \varepsilon_{\beta} & \text { if } V_{i-1, i}=V_{A} \text { and } V_{i, i+1}=V_{B} \\ \varepsilon_{\gamma} & \text { if } V_{i-1, i}=V_{B} \text { and } V_{i, i+1}=V_{A} \\ \varepsilon_{\delta} & \text { if } V_{i-1, i}=V_{i, i+1}=V_{B} .\end{cases}
$$
\]

The elements of the Green function satisfy the following set of equations

$$
\begin{equation*}
\left(E+\mathrm{i} 0^{+}+\varepsilon_{i}\right) G_{i j}=\delta_{i j}+\sum_{k} V_{i k} G_{k j} \quad i, j=0, \pm 1, \pm 2, \ldots \tag{2}
\end{equation*}
$$

The ldos at site i is given by

$$
\begin{equation*}
\rho_{i}(E)=-\frac{1}{\pi} \operatorname{Im} G_{i i}\left(E+\mathrm{i} 0^{+}\right) \tag{3}
\end{equation*}
$$

where Im denotes the imaginary part of a complex.
In order to calculate the LGF at any site in a $B n$ chain, we introduce $2 n+1$ basic renormalization transformations $T_{1}, T_{2}, \ldots, T_{2 n+1}$. Transformations $T_{1}, T_{2}, \ldots T_{n+1}$ are represented by

$$
\begin{aligned}
& \left(B^{n} A^{n+1}, B^{n} A\right) \rightarrow\left(A^{\prime}, B^{\prime}\right) \\
& \left(B^{n-1} A^{n+1} B, B^{n-1} A B\right) \rightarrow\left(A^{\prime}, B^{\prime}\right), \ldots,\left(A^{n+1} B^{n}, A B^{n}\right) \rightarrow\left(A^{\prime}, B^{\prime}\right)
\end{aligned}
$$

respectively, while the representations of the transformations $T_{n+2}, T_{n+3}, \ldots, T_{2 n+1}$ are

$$
\begin{gathered}
{\left[A^{n-1}\left(A B^{n}\right)^{n+1} A, A^{n-1}\left(A B^{n}\right) A\right] \rightarrow\left(A^{\prime}, B^{\prime}\right)} \\
{\left[A^{n-2}\left(A B^{n}\right)^{n+1} A^{2}, A^{n-2}\left(A B^{n}\right) A^{2}\right]} \\
\rightarrow\left(A^{\prime}, B^{\prime}\right), \ldots,\left[\left(A B^{n}\right)^{n+1} A^{n},\left(A B^{n}\right) A^{n}\right] \rightarrow\left(A^{\prime}, B^{\prime}\right)
\end{gathered}
$$

respectively. These $2 n+1$ basic transformations have the properties that, if we apply them to a $B n$ chain individually, $2 n+1$ new $B n$ chains are obtained and all the sites of the original chain are transferred to the new chains. The sites of the different new chains are different (see figure 1). It is found that transformations T_{1} and T_{n+1} classify

Figure 1. A schematic representation of the five basic transformations for the $B 2$ chain. (a) A $B 2$ chain with key site (site 0) of type S_{β}; (b) a $B 2$ chain with key site of type S_{γ}.
the $B n$ chains of different generations into two distinct classes with key sites of different types denoted by type S_{β} or S_{γ}, in which each chain has only one key site and no successive generations belong to the same class. The characteristic feature of the key site of type S_{β} or S_{γ} is that, through the transformation T_{1} or T_{n+1}, this site remains undecimated and the environment of it in the new chain is the same as that in the original one. Therefore the LGF of the key site S_{β} and S_{γ} in an infinite Bn chain can be obtained by successive iterations of transformation t_{1} or T_{n+1}. For the other sites of the $B n$ chain, we can convert them to a key site of a renormalized $B n$ chain by suitable combinations of the $2 n+1$ transformations. We first focus our attention on the sites near the key site of type S_{β} (site 0). It is found that transformations $T_{2}, T_{3}, \ldots, T_{n+1}$ make the sites $1,2, \ldots, n$ become the key sites of type S_{β} of the new $B n$ chains, respectively, while transformations $T_{n+2}, T_{n+3}, \ldots, T_{2 n+1}$ transfer the sites $-n,-(n-1), \ldots,+1$ to the key sites of type S_{γ} respectively. If site 0 is the key site of type S_{γ}, transformations $T_{1}, T_{2}, \ldots, T_{n}$ convert the sites $-n,-(n-1), \ldots,-1$ to the key sites of type S_{y} and $T_{n+2}, T_{n+3}, \ldots, T_{2 n+1}$ make the sites $1,2, \ldots, n$ become the key sites of type S_{β}, respectively. From the above statement, we then have the following conclusions: for an infinite $B n$ chain, when we apply the $2 n+1$ basic transformations to it individually, $2 n+1$ new chains are obtained. We can first identify a special site called the key site by transformation T_{1} or T_{n+1}, while the $2 n$ sites near the key site become the key sites of the $2 n$ new Bn chains obtained by other $2 n$ transformations. For each new chain, same operations can be taken and then more sites become the key sites. In this way we can convert any given site of the $B n$ chain to a key site in a renormalized $B n$ chain and obtain the corresponding LGF. We present figure 1 for the $B 2$ chain to illustrate our RSRG scheme for the $B n$ chain. The five transformations are $T_{1}, T_{2}, T_{3}, T_{4}$ and T_{5} represented by

$$
\begin{aligned}
& (B B A A A, B B A) \rightarrow\left(A^{\prime}, B^{\prime}\right) \\
& (B A A A B, B A B) \rightarrow\left(A^{\prime}, B^{\prime}\right) \\
& (A A A B B, A B B) \rightarrow\left(A^{\prime}, B\right) \\
& (A A B B A B B A, A A B B A) \rightarrow\left(A^{\prime}, B\right) \\
& (A B B A B B A A, A B B A A) \rightarrow\left(A^{\prime}, B\right) .
\end{aligned}
$$

According to (2) and the rSRG scheme described above, we obtained the recursion relation of transformation T_{1} for the $B n$ chain:

$$
\begin{align*}
& \varepsilon_{\alpha}^{\prime}=\varepsilon_{\beta}+\frac{1}{X}\left(V_{A} Y+V_{B} Z\right) \quad \varepsilon_{\beta}^{\prime}=\varepsilon_{\beta}+\frac{V_{A} Y}{X}+\frac{V_{B} P_{n-2}}{P_{n-1}} \\
& \varepsilon_{\gamma}^{\prime}=\varepsilon_{\beta}+\frac{V_{B} Z}{X}+\frac{V_{A}^{2} U_{n-1}(g)}{P_{n-1}} \tag{4}\\
& \varepsilon_{\sigma}^{\prime}=\varepsilon_{\beta}+\frac{1}{P_{n-1}}\left[V_{B} P_{n-2}+V_{A}^{2} U_{n-1}(g)\right] \\
& V_{A}^{\prime}=\frac{V_{A} V_{B}}{X} \quad V_{B}^{\prime}=\frac{V_{A} V_{B}}{P_{n-1}}
\end{align*}
$$

where

$$
\begin{align*}
& g=\left(E-\varepsilon_{\delta}\right) / V_{B}, h=\left(E-\varepsilon_{\alpha}\right) / V_{A} \\
& P_{n}=\left(E-\varepsilon_{\gamma}\right) U_{n}(g)-V_{B} U_{n-1}(g) \\
& Q_{n}=\left(E-\varepsilon_{\gamma}\right) U_{n}(h)-V_{A} U_{n-1}(h) \\
& X=U_{n-1}(g) Q_{n}-V_{B} U_{n-2}(g) U_{n}(h) \tag{5}\\
& Y=U_{n-1}(g) Q_{n-1}-V_{B} U_{n-2}(g) U_{n-1}(h) \\
& Z=U_{n}(h) P_{n-2}-V_{A} U_{n-2}(g) U_{n-1}(h)
\end{align*}
$$

and $U_{n}(g)$ is the nth Chebyshev polynomial of the second kind [12,13,22] which obeys the recursion relation

$$
\begin{equation*}
U_{n+1}(g)=g U_{n}(g)-U_{n-1}(g) \quad n \geqslant 1 \tag{6}
\end{equation*}
$$

with initial conditions $U_{-1}(g)=0$ and $U_{0}(g)=1$. Using the recursion relations, we can easily calculate the LGF and the ldos at the key site of an infinite Bn chain. It is not difficult to derive the recursion relations of the other $2 n$ transformations. As typical examples, we illustrate the LDOS at the key site of type S_{β} of the $B n$ chain on the off-diagonal model in figures $2(a)-(c)$ for $n=2,3$, and 4, respectively. For the Fibonacci chain, the spectrum is a Cantor set [1-6] and the LDOs [17-21] has no smooth part. However, figures $2(a)-(c)$ show that in some regions of the spectrum the ldos seems to have a roughly constant behaviour. This precise point can be well explained [23]: thus, there are a finite density of molecules containing $n B$ in $B n$. Then, there exists exact extended eigenstates which can be built from the Dirichlet states of the ($n-1$) molecules. Their energies are

$$
\begin{equation*}
E_{l}=2 \cos \left(\frac{\pi l}{n}\right) \quad l=1, \ldots, n-1 . \tag{7}
\end{equation*}
$$

One finds the set $\{0\}$ for $n=2,\{-1,1\}$ for $n=3$, and $\{-\sqrt{2}, 0, \sqrt{2}\}$ for $n=4$. These are clearly the energies which correspond to the smoothness of the ldos shown in figure 2. The reason is the following. One can associate a trace map with the dynamics of transfer matrices. As in the case of the Fibonacci chain, there is an invariant \mathscr{F}, and the periodic case corresponds to the value $\mathscr{I}=0$. But contrary to the Fibonacci case, \mathscr{I} does depend on E and becomes 0 precisely for the E_{l}^{\prime}. Since the dos is given by the $\cos ^{-1}$ of the trace, it is locally smooth. In fact it is even almost constant since $E=E_{l}$ corresponds to the energy 0 of the periodic chain where the dos is stationary. Since the associated state is extended the ldos behaves in the same way. A similar phenomenon was obtained by Site and Mosseri [24] around a gap closing of any kind of quasiperiodic chain.

In summary, we have presented a unified rSrg scheme to study the local electronic properties of the $B n$ chain which underlying sequence is given by the inflation rule $(A, B) \rightarrow\left(A B^{\prime \prime}, A\right)$ as a simple generalization of the Fibonacci sequence. In our scheme, $2 n+1$ basic renormalization transformations $T_{1}, T_{2}, \ldots, T_{2 n+1}$ are introduced. For an infinite $B n$ chain, we can identify a special site called the key site. The lgf and the bDos of the key site can be calculated by successive iterations of transformation T_{1} or T_{n+1} according to the type of the key site. Any other site can be transferred to a key site of a renormalized $B n$ chain by suitable combinations of the $2 n+1$ basic transformations.

Figure 2. The ldos (arbitrary units) at the key site of type S_{β} for the Bn chain, in which $V_{A}=1, V_{B}=1.5$ and $\varepsilon_{\alpha}=\varepsilon_{\beta}=\varepsilon_{\gamma}=\varepsilon_{\delta}=0$. (a) B2 chain; (b) B3 chain; (c) B4 chain.

This work has been supported by the National Natural Science Foundation of China and in part by CCAST (World Laboratory).

References

[1] Kohmoto M, Kadanoff L P and Tang C 1983 Phys. Rev. Left, 501870
[2] Ostlund S, Pandit R, Rand D, Schlinhuber H J and Siggia E D 1983 Phys. Rev. Lett. 501783
[3] Kohmoto M, Sutherland B and Tang C 1987 Phys. Rev. B 351020
[4] Lu J P, Odagaki T and Birman J L 1986 Phys. Rev. B 334809
[5] Luck J M and Petritis D 1986 J. Stat. Phys. 42289
[6] Niu Q and Nori F 1986 Phys. Rev. Lett. 572057
[7] Sire C and Mosseri R 1989 J. Physique 503447
[8] Delyon F and Petritis D 1986 Commun. Math. Phys. 103441
[9] Bombieri E and Taylor J E J. Physique Colloq. 47 C3-19
[10] Gümiòs G añd Ali M K 1988 Phys. Rèv. Lêti. 601081
[11] Holzer M 1989 Phys. Rev. B 381709
[12] You J Q, Yang Q B and Yan J R 1990 Phys. Rev. B 417491
[13] Kǒlár M and Ali M K 1990 Phys. Rev. B 417108
[14] Severin M and Riklund R 1989 Phys. Rev. B 3910362
[15] Severin M, Dulea M and Riklund R 1989 J. Phys: Condens. Matter. 18851
[16] Severin M and Riklund R 1989 J. Phys: Condens. Matter 15607
[17] Ashraff J A and Stinchcombe R B 1988 Phys. Rev. B 375723
[18] Chakrabarti A, Karmakar S N and Moitra R K 1989 Phys. Rev. B 399730
[19] Capaz R B, Koiller B and de Queiroz S L A 1990 Phys. Rev. B 426402
[20] Zhong J X, You J Q, Yan J R and Yan X H 1991 Phys. Rev. B in press
[21] Zhong J X, Yan J R, Yan X H and You J Q 1991 J. Phys: Condens. Matter 35685
[22] Kalugin P A, Pitayev A Y and Levitov L S 1986 Sov. Phys.-JETP 64410
[23] Sire C 1991 private communication
[24] Sire C and Mosseri R 1990 J. Physique 511569

[^0]: \dagger Mailing address.

