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LEITER TO THE EDITOR 
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Abstract. We study the local electronic properties of a family of generalized Fibonacci 
lattices associated with the sequences which are given by the inflation rule ( A ,  I?)+ 
(AB",  Aj,  where n is a n  aibitrary positive integer greater than one. A unihed reai-space 
renormalization-group approach is presented to calculated the local Green function and 
the local density of states at any given rite. 

In recent years there has been a growing interest in the theoretical study of the electronic 
and phonon properties of the one-dimensional ( I D )  Fibonacci lattice [l-91 and the 
generaiized Fibonacci iattices [iu-ibj. Kohmoto et ai [ i j  introduced a dynamicai- 
systems-theory method to study the Fibonacci lattice and later this method was applied 
to deal with the generalized Fibonacci lattices [IO-141. Results showed that, for the 
Fibonacci lattice, the spectrum is a Cantor set [ 1-61; while for the generalized Fibonacci 
lattices more physical properties were found particularly for a family of the generalized 
Fibonacci lattices corresponding to the sequences S, given by the recursion relation 

integer greater than one [lo-161. This family of lattices are termed the En chains here 
for convenience according to the inflation rule (A, B)+(AB",  A). 

On the other hand, since the quasiperiodic systems have no  translational invariance, 
every site in the chain has a different environment. So it is important to study the local 
electronic and phonon properties. For the Fibonacci chain, Ashraff and Stinchcombe 
r171 FLL-L-.: .., - I  r l a i  - - A  P " _ _ . -  nt - 1  r l o i  --,.--+I.. ....i,...intr~ +ha I,.~"I P L,,,) b I I a L I ~ V a L L I  c, UL L'", 'l11" L.LL&"sL c. U. L L ' J  1 L C L . " L 1 J  CoLIcUIaLc" L l l L  IVLYI U,==,, 

function (LGF) and the local density of states (LDOS) at a particular site. More recently, 
an exact real-space renormalization-group scheme was given by Zhong e/ a/ [20,21] 
to obtain the LGF and LDOS at any given site. However, to our knowledge, attention 
has, to date, mainly concentrated on the Fibonacci chain. Stimulated by the interesting 
results of the En chain, we present here a unified RSRG approach to calculate the LCF 

In our study, we emply the following I D  electronic tight-binding Hamiltonian: 

s,,, = is,, s;-,j for ;a i with so= {ai arid s, = {A i ,  i n  wi,i& ,I is an a,biira,~y poslilvc . .  

the I t1fiC "f the  Rn rhnin L..- 1""1 ". ...- Y.. -.. ".... 

H =I li)dil+I lQVj( j l  0 )  

t Mailing address. 
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where the nearest-neighbour hopping integral V, takes two kinds of values V, and V,  
represented by letters A and B, respectively; A and B are arranged in the Bn sequence, 
The site energy E ,  takes one of the four values according to the local environment of 
site i 

if V,-,,j = V,j+, = VA 
if V , _ , , ( =  V, and V,,+,= V,, 
if V, .-,,, = V ,  and V,,;,, = VA 
if V, -,,, = K,j+, = V,. 

The elements of the Green function satisfy the following set of equations 

( E  +io++ E.)G$ = 8, + E  K.kGkj i , j = O , + l , + 2  , _ . _ _  (2) 
x 

The LDOS at site i is given by 

1 
p ; ( E ) =  --lm $7 G,,(E+iO+) (3) 

where Im denotes the imaginary part of a complex. 
In order to calculate the LGF at any site in a Bn chain, we introduce 2 n  + I basic 

renormalization transformations T ,  , T2,  . . . , TZn+, . Transformations T,  , T 2 , .  , . T,+, 
are represented by 

(B"A"+', B"A)-t (A ' ,  B')  

(B"-'A"+'B, B"- 'AB)+ (A', B'),  . . . , (A""B", AB")+ (A ' ,  B')  

respectively, while the representations of the transformations T",,,, T,,,, . . . , TZncl are 

[A"- ' (AB")"+ 'A,  A"- ' (AB")A]+  (A', B') 

[A"-'(AB')""A2, A"-2(AB")A2] 

+ ( A ' ,  B') ,  . . . , [ (AB")"+'A",  (AB")A" ]+  (A', B') 

respectively. These 2 n  + 1 basic transformations have the properties that, if we apply 
them to a Bn chain individually, 2 n  + 1 new Bn chains are obtained and all the sites 
of the original chain are transferred to the new chains. The sites of the different new 
chains are different (see figure I ) .  It is found that transformations T, and T,,, classify 

l o /  ;.- 0 +m 

... ... T, 
... ... T? 

... ... TI 
.. .. TI 
... -- r, 

I b l  -m 0 +m ... 
... --- T I  
... ..- T, 
... .. TI 

... ... T, 
... .-. r, 

Figure 1. A schematic representation of  the five basic transformations for the 8 2  chain. 
( a )  A 8 2  chain with key site (site 0) of type S,; ( b )  a 8 2  chain with key site of type S,. 
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the En chains of different generations into two distinct classes with key sites of different 
types denoted by type S, or S,, in which each chain has only one key site and no 
successive generations belong to the same class. The characteristic feature of the key 
site of type S, or S, is that, through the transformation Tl  or T,+, , this site remains 
undecimated and the environment of it in  the new chain is the same as that in the 
original one. Therefore the LCF of the key site S, and S ,  in an infinite En chain can 
be obtained by successive iterations of transformation 1 ,  or T,+, . For the other sites 
of the Bn chain, we can convert them to a key site of a renormalized En chain by 
suitable combinations of the 2 n  + 1 transformations. We first focus our attention on 
the sites near the key site of type S, (site 0) .  It is found that transformations 
T2,  T,, . . . , T,+, make the sites I ,  2,. . . , n become the key sites of type S, of the new 
Bn chains, respectively, while transformations Tn+2, T,,,,, . . . , T2,,+, transfer the sites 
-n, -( n - l), . . . , +1 to the key sites of type S, respectively. If site 0 is the key site of 
type S,, transformations T , ,  T2 ,..., T, convert the sites -n, - ( n - l )  ,..., -1 to the 
key sites of type S ,  and T,,,, T,,,,, . . . , T2,,+, make the sites 1.2,. . . , n become the 
key sites of type S,, respectively. From the above statement, we then have the following 
conclusions: for an infinite Bn chain, when we apply the 2n  + 1 basic transformations 
to it individually, 2 n  + 1 new chains are obtained. We can first identify a special site 
called the key site by transformation T, or T,+I ,  while the 2 n  sites near the key site 
become the key sites of the 2 n  new En chains obtained by other 2 n  transformations. 
For each new chain, same operations can be taken and then more sites become the 
key sites. In this way we can convert any given site of the En chain to a key site in a 
renormalized En chain and obtain the corresponding LGF. We present figure 1 for the 
82  chain to illustrate our RSRG scheme for the En chain. The five transformations are 
T ,  , T z ,  T,, T4 and Ts represented by 

(BBAAA, BBA) + (A ' ,  E )  

(BAAAB, BAB) + (A' ,  E ' )  

(AAABB, ABB) + (A ' ,  E )  

(AABBABBA, AABBA)+ (A', E )  

(ABBABBAA, ABBAA)+ (A', E ) .  

According to (2) and the RSRG scheme described above, we obtained the recursion 
relation of transformation T, for the En chain: 



12, 13,221 which 

(6) 

with initial conditions U - , ( g )  = 0 and U,(g)  = 1. Using the recursic relations, we can 
easily calculate the LGF and the LDOS at the key'site of an infinite En chain. It is not 
difficult to derive the recursion relations of the other 2 n  transformations. As typical 
examples, we illustrate the LDOS at the key site of type So of the Bn chain on the 
off-diagonal model in figures 2(a) - (  c )  for n = 2,3, and 4, respectively. For the Fibonacci 
chain, the spectrum is a Cantor set [I-61 and the LOOS [17-211 has no smooth part. 
However, figures 2(a)-(c) show that in some regions of the spectrum the LDOS seems 
to have a roughly constant behaviour. This precise point can be well explained [23]: 
thus, there are a finite density of molecules containing n B in Bn. Then, there exists 
exact extended eigenstates which can be built from the Dirichlet states of the ( n  - 1 )  
molecules. Their energies are 

El = 2 cos (+) I =  1, .  . . , n - I .  (7) 

Onefindstheset(0)for  n=2,{-1,1)for  n = 3 , a n d { - & , O , A ) f o r  n=4.Theseare  
clearly the energies which correspond to the smoothness of the LDOS shown in figure 
2. The reason is the following. One can associate a trace map with the dynamics of 
transfer matrices. As in the case of the Fibonacci chain, there is an invariant 9, and 
the periodic case corresponds to the value 9 = O .  But contrary to the Fibonacci case, 
9 does depend on E and becomes 0 precisely for the E ; .  Since the DOS is given by 
the cos-' of the trace, it is locally smooth. In fact it is even almost constant since 
E = E, corresponds to the energy 0 of the periodic chain where the DOS is stationary. 
Since the associated state is extended the LDOS behaves in the same way. A similar 
phenomenon was obtained by Site and Mosseri [24] around a gap closing of any kind 
of quasiperiodic chain. 

I n  summary, we have presented a unified RSRG scheme to study the local electronic 
properties of the Bn chain which underlying sequence is given by the inflation rule 
(A, B ) +  (AB", A )  as a simple generalization of the Fibonacci sequence. I n  our scheme, 
2n + 1 basic renormalization transformations T, ,  T,, . . . , T,,,+, are introduced. For an 
infinite Bn chain, we can identify a special site called the key site. The LGF and the 
LDOS of the key site can be calculated by successive iterations of transformation TI 
or T,,, according to the type of the key site. Any other site can be transferred to a 
key site of a renormalized Bn chain by suitable combinations of the 2n + 1 basic 
transformations. 
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Figure 2. The LDOS (arbitrary units) at the key site of  type S, for the Bn chain, in which 
V , = l ,  Va=1.5and ~ , = E ~ = E ~ = E ~ = O . ( ( I )  BZehain; ( b ) B ) c h a i n ; ( e J  B4chain. 
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